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Abstract

We present a grid-less version of the L1-SVD algorithm for direction of arrival estimation.

The resulting semidefinite programming approach is a globally convergent, fully parametric

method capable of working with two dimensional arrays with any arbitrary sensor configura-

tions. It is computationally efficient, and shows improved performance when compared with

other popular alternatives. The analysis also allows us to formulate the SPICE algorithm in

gridless manner.
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1 Introduction

Direction of arrival (DOA) estimation is a major functional requirement in numerous applications

like radar, sonar, etc [1]. The classical methods are often classified in two broad categories.

The first category consists of algorithms like Capon [2] and APES [3], which pose the DOA

estimation problem as a beamforming problem. A popular alternative to this is the class of

subspace algorithms like MUSIC [4], ESPRIT [5] or weighted subspace fitting [6,7], which exploit

the low-rank structure of the noise-free signal. Recently some sparse recovery methods like L1-SVD,

SPICE, etc, [8–11] have gained popularity due to their capability of producing better results from

shorter data records. Some of the above methods are parametric, and others are non-parametric.

Traditionally, the parametric methods are preferred due to ease of use, and their capability of

producing clean spatial spectrum at low signal to noise ratio (SNR). However, the parametric

algorithms demand very specific, regular array geometries leading to nice mathematical structure

of the problem. In this paper we propose a method to alleviate this difficulty. This technique

allows us to formulate the sparse recovery methods like L1-SVD or SPICE in a gridless manner.

This formulation holds for any two dimensional array configuration. Consequently the resulting

algorithm can detect and localize multiple sources within 0◦ to 360◦ azimuth range.

Linear arrays (LA) where the sensors are located on a regular grid have been very attractive in

parametric DOA estimation. Most parametric subspace algorithms need uniform linear array. The

tradition continues in recent developments of co-prime array [12–14], minimum-redundancy linear

arrays [15], and with the developments in grid-less sparse recovery methods [16–22]. However, with

a LA one can cover at most 180◦ azimuth range without ambiguity. This makes 2D geometries

interesting. To the best of our knowledge, ’L’ shaped arrays [22] and uniform circular array [23–25]

are the only 2-D geometries supporting parametric algorithms. In addition, in our opinion, it

might be possible to extend some of above methods to arrays with sensors arranged on a regular

rectangular grid. In this context it should be noted that there are sparsity based semi-parametric

methods, discussed below, applicable to arbitrary array geometries.
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DOA estimation methods applicable to arbitrary sensor configurations are either non-parametric,

or require a non-parametric front-end. The classical among these are CAPON, MUSIC and APES

[26]. These methods are outperformed by some of the recently developed techniques [8–11,27], par-

ticularly when the data record is not long. L1-SVD [8] combines the singular value decomposition

(SVD) step of subspace algorithms with the ℓ1 norm minimization of sparse recovery methods.

IAA [27] is a non parametric weighted least square type algorithm, which is efficient for DOA

estimation at moderate/high SNR. However, IAA solves a non-convex problem. Thus the global

convergence is not guaranteed. SPICE [10, 11, 28] is a globally convergent, hyper-parameter-free

method that can also estimate the noise variance.

The above techniques [8–11, 27] must discretize the range of interest into a grid. Off-grid

targets can lead to mismatches in the model and deteriorate the performance significantly [29].

Some semi-parametric methods have been proposed to reduce these problems. For instance, in [30]

the joint sparsity between the original signal and the grid mismatch is exploited. A first-order

approximation is used in [30] to handle the grid mismatch problem. Hence, the DOA estimation

performance is still limited by higher-order modelling mismatches. It is also common to increase

the grid density to reduce the grid mismatch errors [31, 32]. However, a dense grid increases

computational load, and the correlation between adjacent atoms of the dictionary. Some argue

that this increase in correlation causes performance degradation of the grid based sparse recovery

algorithms [32].

In this paper we present a semidefinite programming algorithm for the total variation mini-

mization approach (TVMA) [33] for DOA estimation. Our algorithm can be seen as the grid-less

pathway to L1-SVD [8]. TVMA has been the key to the theory of super resolution [33], and has

been adopted by several authors in spectral analysis. Similar results are also derived using the

atomic norm evaluation paradigm [34] for DOA estimation using LAs [17, 18, 35]. In [35] atomic

norm evaluation in presence of multiple measurement vectors is considered. This can be viewed as

a continuous counterpart of the ℓ2,1 norm minimization method. The SPICE-like method of [36]
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can work with sparse linear arrays. The theory of super-resolution has been extended for co-prime

arrays in [19], and a matrix completion based method has appeared in [21]. The main advan-

tage of our solution is its applicability in arbitrary 2D array configurations. To the best of our

knowledge it is the only fully parametric, globally convergent method applicable to arbitrary 2D

array configurations. The other contribution of this paper is to make TVMA hyper-parameter

free, which is a great practical advantage. Finally, we show how we can make SPICE gridless using

the mathematical results presented herein.

2 Main results

We use R and C to denote the set of all real and complex numbers, respectively. We consider

the direction of arrival (DOA) estimation problem, where K narrow band waves from K far field

sources are incident on an array of P narrow band sensors located at points (rp, θp), p = 1, 2, . . . , P ,

expressed in polar coordinates. The unit of distance is taken as the half-wavelength of the waves.

Let ξk be the azimuth of the k th source. We collect the P dimensional measurements over L

sampling instants to build a P × L matrix Y , which satisfies

Y =
K
∑

k=1

γ(ξk)s
⊺

k +E, (1)

[γ(ξ)]p = exp{iπrp cos(ξ − θp)}, (2)

where sk is the L dimensional signal of source k, and E is the additive noise. We wish to estimate

{ξk}Kk=1 from Y .
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2.1 Noise-free case

We start by considering the noise-free case where E = 0. For this we present the TVMA solution.

Later we extend our analysis for E 6= 0. In TVMA we solve

minimize
K̊
∑

k=1

||̊sk||2

subject to Y =
K̊
∑

k=1

γ(ξ̊k)̊s
⊺

k

(3)

for some K̊, and ξ̊k ∈ [0, 2π], k = 1, 2, . . . , K̊. In other words, among all possible choices of

K̊, {ξ̊k}K̊k=1 and {̊sk}K̊k=1 consistent with Y , we pick the one for which the cost function in (3) is

minimum. The corresponding minimum value, called the atomic norm of Y , is denoted as ||Y ||A.

Lemma 1 below is the first step towards a tractable finite dimensional characterization of (3). It

is a bit more general than some analogous results presented before [37]. When compared with the

corresponding results in literature, the main difference is that the following result can be applied

for any general γ. In that way this is the multidimensional extension to the corresponding scalar

version presented in [38]. The proof appears in Appendix A.

Lemma 1. Let e be the first column of the P × P identity matrix, and Γ : [0, 2π] → HP be such

that Γ(ξ) = γ(ξ)γ∗(ξ). Let K be the closed conic hull of the set {Γ(ξ) ∈ HP : ξ ∈ [0, 2π]}. Then

||Y ||A is the optimum value of

minimize
W∈HL, Q∈K

{Tr(W ) + e∗Qe}/2

subject to







W Y ∗

Y Q






� 0. (4)

In addition if a decomposition Y =
∑

k γ(ξ̊k)α̊kφ̊
∗

k is such that ||φ̊k||2 = 1, ∀k, and ||Y ||A =

∑

k α̊k, then W =
∑

k φ̊kα̊kφ̊
∗

k, Q =
∑

k α̊kΓ(ξ̊k) is a solution to (4).

Conversely, if Q =
∑

k α̊kΓ(ξ̊k) is a solution to (4) for some α̊k > 0, then the trace of the cor-

responding optimum W is
∑

k α̊k = ||Y ||A, and there are unit norm complex vectors φ̊k satisfying

the atomic decomposition Y =
∑

k γ(ξ̊k)α̊kφ̊
∗

k.
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Thus, we can solve (3) by solving the equivalent problem (4). To be able to do so, we need a

convenient characterization of K, which we derive next. Let ρjk and φjk be defined via the complex

addition:

ρj,k eiφj,k = π (rj e
iθj − rk eiθk). (5)

In addition, we use ρ to denote the array aperture:

ρ = max
j,k

ρjk.

From (2), (5) and the definition of Γ it follows that

[Γ(ξ)]jk = exp{iρjk cos(ξ − φjk)}. (6)

Let Jn denote the order n Bessel function of first kind. We write (6) using Jacobi-Anger expansion

[39] as

[Γ(ξ)]jk =

∞
∑

n=−∞

inJn(ρjk) e
−iφjkneiξn. (7)

Although (7) is an infinite series expansion, it has only a finite number of non-zero terms for all

practical purposes. The number of non-zero terms depends on ρ. Given any r > 0, it is wellknown

that |Jn(r)| decays quite rapidly with |n|. We define N(ρ, ǫ) as the smallest positive integer such

that for every n satisfying |n| ≤ N(ρ, ǫ) it holds that |Jn(r)| < ǫ uniformly for all r ∈ [0, ρ]. In

Figure 1 we plot N(ρ, ǫ) as a function of ρ for few different values of ǫ. Set ǫ to the precision of

the underlying computational platform. Since |Jn(ρ)| = |J−n(ρ)| for all ρ and n, by (7) we can

approximate Γ(ξ) without any loss of precision as

Γ(ξ) =

N(ρ,ǫ)
∑

n=−N(ρ,ǫ)

Cne
iξn, (8)

where Cn is given element-wise as

[Cn]j,k = inJn(ρj,k) e
−iφj,kn. (9)

In the following we drop the arguments of N(ρ, ǫ) for convenience, and simply write N .
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Figure 1: The plot of N(ρ, ǫ) against ρ for three different values of ǫ.

It is a classical result [40] that Q ∈ K if and only if there is a positive measure µ on [0, 2π]

such that

Q =

∫ 2π

0

Γ(ξ) dµ(ξ). (10)

Using (8) we conclude that Q ∈ K if and only if

Q = S(ν) := ν0C0 +
N
∑

n=1

(Cnνn +C−nν
∗
n) (11)

for some ν = [ ν0 ν1 · · · νN ]⊺ ∈ R× CN satisfying

νn =

∫ 2π

0

eiξn dµ(ξ), n = 0, 1, . . . , N (12)

for some positive measure µ on [0, 2π]. Next we use the celebrated theorem of Carathéodory and

Fejér for the trigonometric moment problem [40]. Here u denotes the unit step function, i.e.,

u(ξ) = 1 if ξ ≥ 0, and u(ξ) = 0 if ξ < 0.

Theorem 1. Given ν ∈ R× CN there exists some positive measure µ satisfying (12) if and only

if the Hermitian Toeplitz matrix

T (ν) =



















ν0 ν∗
1 · · · ν∗

N

ν1 ν0
. . .

...

...
. . .

. . . ν∗
1

νN · · · ν1 ν0


















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is non-negative definite. In addition, if K = rank{T (ν)} ≤ N , then there is a unique positive

measure µ satisfying (12), and it is of the form

µ(ξ) =

K
∑

k=1

αku(ξ − ξk) (13)

for some αk > 0 and ξk ∈ [0, 2π], where {αk, ξk}Kk=1 are obtained from the unique Vandermonde

decomposition

T (ν) =
K
∑

k=1

αkω(ξk)ω
∗(ξk), (14)

where ω(ξ) := [ 1 eiξ · · · eiξN ]⊺.

From (11), (12), and Theorem 1 we conclude that Q ∈ K if and only if Q = S(ν) for some ν

in the set

G = {ν ∈ R× C
N : T (ν) � 0}.

Here A � 0 means A is a non-negative definite matrix.

Since [Γ(ξ)]1,1 = 1, by using (10), and (12) we get e∗Qe = ν0. Hence (4) is equivalent to

minimize
W∈HL, ν∈G

{ν0 + Tr(W )}/2,

subject to







W Y ∗

Y S(ν)






� 0.

(15)

Let ν∗ be a solution to (15). Based on the value of ν∗ two cases can arise:

1. T (ν∗) is singular: In this case the second half of Theorem 1 applies, and T (ν∗) admits a

unique Vandermonde decomposition

T (ν∗) =

K̊
∑

k=1

α̊kω(ξ̊k)ω
∗(ξ̊k), (16)

where rank{T (ν∗)} = K̊. To compute {α̊k, ξ̊k}K̊k=1, we write the individual elements of (16)

in terms of the optimal value νn∗ of νn:

νn∗ =
K̊
∑

k=1

α̊kz
n
k , zk = eiξ̊k , (17)

and these equations can be solved for {α̊k, ξ̊k} via Prony’s method [26], [41, Appendix A].
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2. T (ν∗) is non-singular: When Y does not represent signals received from some targets (e.g.

when the entries of Y are random numbers), then (15) may result a non-singular T (ν∗). In

this case the Vandermonde decomposition (16) is no longer unique. When Y does represent

some signals received from some targets, T (ν∗) is rarely non-singular. Nevertheless, to

obtain a desirable solution from a non-singular T (ν∗), the previous authors on TVMA have

suggested computing the Vandermonde decomposition of T (ν∗)− δI instead, where δ is the

smallest eigenvalue of T (ν∗) [41].

Regardless of whether T (ν∗) is singular or not, the optimal value of Q in (4) is Q∗ = S(ν∗),

which by using (8), (11), and (17) gives

Q∗ = S(ν∗)
(11)
= ν0∗C0 +

N
∑

n=1

(Cnνn∗ +C−nν
∗
n∗)

(17)
=

K̊
∑

k=1

α̊k

N
∑

n=−N

Cne
iξ̊kn

(8)
=

K̊
∑

k=1

α̊kΓ(ξ̊k).

The above equality, according to the converse part of Lemma 1, leads to the required atomic

decomposition of Y in terms of {α̊k, ξ̊k}K̊k=1. When T (ν∗) is singular then {α̊k, ξ̊k}K̊k=1 are unique,

and the optimal atomic decomposition given by (3) is also unique. Otherwise, the optimal atomic

decomposition is non-unique.

Recall that we truncate of the infinite sum (7) by omitting the negligible terms to obtain a

finite sum (8). For this reason (15) is an approximation of (4). Nevertheless, when N chosen

appropriately then approximation errors are not noticeable even when E = 0. In practice E 6= 0.

Then it is enough to ensure that the approximation errors are below the noise floor. Taking N too

small results systematic bias in the estimates due to approximation errors.

2.2 Noisy data

So far we have assumed E = 0. Now we turn to the case where E 6= 0. We assume that the rows

of E are mutually uncorrelated, and the variance of any element of E is σ2. Typically LP is large
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enough such that the law of large numbers holds:

Tr(EE∗) ≈ σ2LP. (18)

The natural way to adapt the approach developed so far is to use a basis pursuit denoising (BPDN),

where we estimate the noise-free component Y̊ of Y together with ν by solving

minimize
W∈HL, ν∈G, Y̊ ∈CP×L

{Tr(W ) + ν0}/2,

subject to







W Y̊
∗

Y̊ S(ν)






� 0

Tr{(Y − Y̊ )(Y − Y̊ )∗} ≤ ζ

(19)

for some ζ that is a monotonic function of σ2.

The main numerical difficulty associated with solving (19) is that the size of the matrix W

is L × L. Often L is large. Then the matrix in the LMI in (19) can be quite big. Nevertheless,

by Lemma 2 [42, Proposition-1], [43] we can use an orthogonal factorization of Y to work with a

matrix with a much smaller dimension.

Lemma 2. Let P1 be the rank of Y . Consider an orthogonal factorization Y = ZV ∗, where V

is a L× P1 matrix with mutually orthogonal columns. For any given non-negative definite matrix

Q the problems

minimize
W 1∈HP1

,Z̊∈CP×P1

Tr(W 1),

subject to







W 1 Z̊
∗

Z̊ Q






� 0,

Tr{(Z − Z̊)(Z − Z̊)∗} ≤ ζ

(20)
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and

minimize
W∈HL,Y̊ ∈CP×L

Tr(W ),

subject to







W Y̊
∗

Y̊ Q






� 0

Tr{(Y − Y̊ )(Y − Y̊ )∗} ≤ ζ.

(21)

are equivalent. In particular, if W 1∗, Z̊∗ constitute the solution to (20) then the solution to (21)

is W ∗ = VW 1∗V
∗ and Y̊ ∗ = Z̊∗V

∗.

Using Lemma 2 we note that (19) is equivalent to

minimize
W 1∈HP1

, ν∈G, Z̊∈CP×P1

{ν0 + Tr(W 1)}/2,

subject to







W 1 Z̊
∗

Z̊ S(ν)






� 0,

Tr{(Z − Z̊)(Z − Z̊)∗} ≤ ζ.

(22)

The above semidefinite program can be solved via any of the popular solvers like SeDuMi [44],

SDPT3 [45], etc. These solvers require us to represent (22) as a cone linear program, which is

then solved using some primal dual path following scheme [46]. The LMI in (22) is converted into

an inequality over a semidefinite cone, while the second inequality is converted into an inequality

of over a second order cone. Since the size of the LMI is N + 1 + P1, a path following method

takes O(
√
N + 1 + P1) iterations [46]. The underlying matrices associated with such cone linear

programs are highly sparse [47]. When this sparsity is exploited, the worst case computational

complexity per iteration typically depends on the cube of the number of real valued variables [47].

In (22) we have P 2
1 independent real valued variables in W 1, 2P1P real valued variables in Z̊, and

2N+1 real valued variables in ν. Hence the per iteration complexity is O{(P 2
1 +2P1P +2N+1)3}.

Next, we argue that a good choice for ζ is Tr(EE∗) ≈ σ2LP .

Lemma 3. Suppose Tr(ZZ∗)∗ > ζ, and Z̊∗ is the optimal value of Z̊ in (20). Then Tr{(Z −

Z̊∗)(Z − Z̊∗)
∗} = ζ.
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The proof of Lemma 3 appears in Appendix B. Unless we take ζ < Tr(ZZ∗), the denoising

method (22) treats the observed data as noise. When ζ < Tr(ZZ∗)∗, then Tr{(Z − Z̊∗)(Z −

Z̊∗)
∗} = ζ . From Lemma 2 we know that the estimated noise Y − Y̊ ∗ = (Z − Z̊∗)V

∗. Since the

columns of V are mutually orthogonal, we get Tr{(Y − Y̊ ∗)(Y − Y̊ ∗)
∗} = ζ . Typically, LP is

sufficiently large enough for the ‘true noise’ E to satisfy (18) rather closely. These motivate the

choice ζ = LPσ2. In order to be able to do so, we must have an estimate of σ2. But that can be

done using classical techniques. Choose the orthogonal factorization Y = ZV ∗ to be the singular

value decomposition (SVD) so that

Z = UΣ, (23)

i.e. U consists of the mutually orthogonal left singular vectors of Y , while Σ is a diagonal matrix

of singular values. From (23) we can estimate σ2 using well known methods, some classical [48–50],

and some more modern [51, 52].

3 Gridless SPICE

In a spirit similar to [38,41], our results are also useful in deriving a gridless version of the SPICE

algorithm [10, 28]. Define the sample covariance matrix

R̂ = Y Y ∗/L = ZZ∗/L.

SPICE estimates the ‘true covariance matrix’

R =

K
∑

k=1

γ(ξk)γ
∗(ξk)E{||sk||22}/L+ diag(σ2

1 , σ
2
2, · · · , σ2

P ) (24)

by minimizing

Tr(R−1R̂ +RR̂
−1
).

A grid based parameterization of R is typically employed to carry out this minimization. However,

note that the first term in the right hand side of (24) resides in K. Thus, the set of all admissible

R is

{Q+ diag(σ2
1, σ

2
2 , · · · , σ2

P ) : Q ∈ K},
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and we can parameterize the set of all admissible R via ν ∈ G. Then after some standard

manipulations using Schur complements we can cast SPICE as

minimize
W∈HL, ν∈G, σ1,...,σP

Tr[W + R̂
−1{S(ν) +D}],

subject to







W Z∗

Z S(ν) +D






� 0

D = diag(σ2
1, σ

2
2, · · · , σ2

P )

(25)

Using the solution ν∗ we can obtain a Vandermonde decomposition of T (ν∗), which then gives K

and {ξk}Kk=1.

4 Simulation results
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Figure 2: (a) Array arrangement for the simulations in Figure 3-Figure 6. (b) Array arrangement

for the simulations in Figure 7.

In simulations we take P = 12. Unless stated otherwise, we use the array configuration in

Figure-2a. Here rp = 5λ, p = 1, 2, . . . , 12, where λ is the wavelength of propagation. In addition,

θ1 = − sin−1(1/20) and θ2 = sin−1(1/20) to ensure that the distance between (r1, θ1) and (r2, θ2)

is λ/2. To construct the 12 element array we repeat this strategy 6 times. For p = 0, 1, . . . , 5 we
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take

θ2p+1 = 2πp/6− sin−1(1/20), θ2p+2 = 2πp/6 + sin−1(1/20)

to ensure that the nearest neighbour of each sensor is at a distance λ/2. The configuration in

Figure 2b is used later to demonstrate the utility of our algorithm when the sensor arrangement is

rather irregular. We assume that all signals are impinging the array along the same elevation angle

90◦ [24]. Note that for any source, the azimuth angle ξ ∈ [0, 360◦). We compare the performance of

proposed grid-less methods with other existing grid-based algorithms. We consider two versions of

the TVMA algorithm. The first version, referred to as TVMA, solves (22) as described. The second

version is motivated by L1-SVD algorithm [8]. Here we apply Akaike Information Criterion [48,49]

to first estimate K. Then from the singular value decomposition Y = UΣV ∗ we construct

Z1 = U(:, 1 : K) Σ(1 : K, 1 : K). (26)

Here we assume that [Σ]1,1 > [Σ]2,2 > · · · . The algorithm obtained using Z1 instead of Z in

(22) is referred to as TVMA-FAST. The construction of Z1 is similar to the preprocessing step in

L1-SVD, and is known to result a faster algorithm with better noise rejection property [8]. We also

implement grid-less SPICE as described in Section 3, and call it SPICE-GL. We refer to grid based

SPICE [10] as SPICE-GB, and implement it as in [28]. SPICE-GB terminates when the relative

change of objective function in two consecutive iterations is below 10−5, or the maximum number

of iterations, 500, is reached. For SPICE-GB and L1-SVD, we discretize the azimuth angle range

θ ∈ [0, 360◦) into G = 4× 360 = 1440 uniform grid points. The SNR is defined as

SNR = 20 log10(||Y̊ ||F/||E||F ).

To implement SPICE-GL, TVMA and TVMA-FAST, we need an appropriate N (see the discussion

above (8)). Using (5) we can compute ρ = maxj,k ρj,k. We set ǫ = 10−10. Then we take N as

the smallest number such that |Jn| < ǫ uniformly on the interval [0, ρ] for all |n| < N . For the

configuration in Figure 2a we get N = 92. We use the SeDuMi [44] solver via CVX modeller [53]

to solve the proposed optimization problems.
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Figure 3: Spatial spectrum obtained by different algorithms to resolve three uncorrelated sources

with power [1, 1, 0.5] and azimuth angle [63.3466, 72.5189, 102.7684] degree and SNR= −2.5 dB.

Total number of snapshots L = 200. The areas around first and second sources are zoomed for

better visualization. (a) SPICE-GB and SPICE-GL; (b) TVMA, TVMA-FAST, L1-SVD.

4.1 Spectral Comparison

Figure-3(a) shows typical power spectra for 3 sources. Here ξ1 = 63.3466◦, ξ2 = 75.5189◦, and

ξ3 = 102.7684◦. The components of s1 are drawn independently from a Gaussian distribution of

mean zero and unit variance. We say this briefly as “the power of source 1 is unity”. Similarly,

the powers of source 2 and source 3 are 1 and 0.5, respectively. The number of snapshots L = 200.

The SNR is −2.5 dB. Figure-3(a) shows the results for SPICE-GB and SPICE-GL. The areas

around first and second sources are zoomed for better visualization. Both SPICE-GB and SPICE-

GL produce many noise peaks, while the amplitudes of the noise peaks of SPICE-GL are smaller

compared to SPICE-GB. Hence, the identification of DOAs is somewhat easier using SPICE-GL

compared to SPICE-GB. Note in Figure-3(a) that the locations of SPICE-GL’s peaks almost

coincide with SPICE-GB’s local maxima. As expected, we have found that the relative heights of

the noise peaks increase with decreasing the SNR value. Figure-3(b) shows the spectra for TVMA,
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TVMA-FAST and L1-SVD. All three algorithms generate sparse spectra. The zoomed view in

the figure shows that the algorithms can locate the first source more accurately compared to the

second source. The average computation times (on a 2.8 GHz, 4GB RAM PC) are as follows:

SPICE-GB: 34.7 sec, SPICE-GL: 3.99 sec, L1-SVD: 2.1 sec, TVMA: 4.65 sec and TVMA-FAST:

3.24 sec.
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Figure 4: RMSE versus number of snapshots for estimating uncorrelated DOAs by different algo-

rithms. (a) SNR = 0 dB, (b) SNR = −2.5 dB. (c) SNR = −5 dB.
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4.2 Estimation accuracy

To measure the DOA estimation accuracy of different algorithms we simulate k = 2 unit power

sources. We maintain ξ2− ξ1 = 10◦, where ξ1 takes values uniformly at random in [0, 360◦) in each

simulation. The following results are based on 200 independent Monte Carlo simulation runs. To

compute DOA estimation accuracy, we must obtain an estimate of the number of sources in each

realization. As illustrated, SPICE generates many noise peaks. Therefore, for a fair comparison,

we follow the procedure proposed in [11, 37]. We assume the number of sources is known. For

SPICE-GB and L1-SVD, the three largest peaks of the spectra are taken to estimate RMSE while

it corresponds to the largest 3 components for TVMA and SPICE-GL.

In in Figure-4 we plot the root mean squared estimation error of different algorithms as a

function of L for different values of SNR. Here the sources are uncorrelated. Note that SPICE-GL

and SPICE-GB perform similarly. On average, L1-SVD performs bit better than SPICE-GB and

SPICE-GL, while TVMA and TVMA-FAST outperform L1-SVD. TVMA-FAST performs better

than TVMA for moderate SNR and moderate number of snapshots due to its noise rejection step.

For the same reason L1-SVD outperforms TVMA in some cases when SNR is moderate. However

this approach of truncating SVD in (26) does not work well with lower SNR and smaller L due

to frequent erroneous estimation of K, when TVMA outperforms the other algorithms. Similar

results for correlated sources are shown in Figure-5. The simulation setting is same as above apart

from the fact that the sources are now correlated with a correlation coefficient 0.9. The findings

for correlated source case is similar as those of the uncorrelated sources apart from the fact the

performance of all the algorithms deteriorate when the sources are correlated. It is noted that

the performance of SPICE deteriorates more compared to other algorithms. This is due to the

covariance fitting criteria used in SPICE (see (24)). SPICE [28] assumes that the phases of {sk(j)}

are independent and uniformly distributed in [0, 2π] which results in a diagonal structure of signal

covariance matrix. In correlated case, this assumption is not valid. Although it has been claimed

in [28, Section-II-A] that the inherent filtering effect of SPICE optimization can yield robust DOA
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estimation in correlated case. However, we find that at low SNR when correlated sources are closed

to each other, the assumption of diagonal signal covariance matrix structure results in high leakage

effect affecting the resolution performance.

Number of Snapshots (L)
50 100 150 200 250 300

R
M

S
E

 (
de

gr
ee

)

0.5

1

1.5

2

2.5

3

3.5

4
4.5

SPICE-GB
SPICE-GL
TVMA
TVMA-FAST
L1-SVD

(a)

Number of Snapshots (L)
50 100 150 200 250 300

R
M

S
E

 (
de

gr
ee

)

100

101

SPICE-GB
SPICE-GL
TVMA
TVMA-FAST
L1-SVD

(b)

Number of Snapshots (L)
50 100 150 200 250 300

R
M

S
E

 (
de

gr
ee

)

101

SPICE-GB
SPICE-GL
TVMA
TVMA-FAST
L1-SVD

(c)

Figure 5: RMSE versus number of snapshots for estimating correlated DOAs by different algo-

rithms. (a) SNR = 0 dB, (b) SNR = −2.5 dB. (c) SNR = −5 dB.

In Figure-6 we investigate the performance of different algorithms of estimating closely spaced

uncorrelated DOAs at −5 dB SNR and L = 200 snapshots. As before, we generated the first

DOA uniformly at random in [0, 360◦). We vary |θ1 − θ2| in different setups. As can be seen, the
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Figure 6: RMSE of estimating closely spaced uncorrelated DOAs by different algorithms. Total

snapshots L = 200 and SNR = −5 dB.

estimation accuracy of TVMA-FAST is the best compared to other algorithms. The performance

of SPICE-GB and SPICE-GL deteriorate when the sources are closely spaced. TVMA performs

better than L1-SVD. This is caused by frequent underestimation ofK by L1-SVD when the sources

are close to each other.

To further demonstrate the utility of the proposed algorithm for arbitrary sensor configurations,

we consider the arrangement in Figure-2(b). As before P = 12. However the sensor locations are

picked randomly within the region between two concentric circles with radii 5λ and 6.5λ. Figure-7

shows the accuracy results for uncorrelated case. The findings are similar to those in Figure-4.

5 Conclusions

We have presented a grid-less algorithm for TVMA based DOA estimation. The advantage of our

method is that it can be applied to 2D arrays with arbitrary sensor configurations. To the best

of our knowledge this is the only fully parametric algorithm capable of doing so. The proposed

method has been tested using numerical simulations. It is faster than other grid based algorithms.

When compared to the state of the art approaches, it shows superior performance when the number
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Figure 7: RMSE versus number of snapshots for estimating uncorrelated DOAs with the array

arrangement in Figure-2(b). (a) SNR = 0 dB, (b) SNR = −2.5 dB.

of snapshots is small. It also performs better when the sources are close to each other.

A Proof of Lemma 1

We need the following result, which has been used also in several other papers on atomic norm

minimization based methods, e.g., [41].

Proposition 1. Suppose that the LMI







W Y ∗

Y Q






� 0. (27)

holds. Then for every Q̄ satisfying Q = Q̄Q̄
∗
there exists a corresponding vector Ȳ such that

Y = Q̄Ȳ . In addition, the minimum value of Tr(W ) subject to the LMI (27) is achieved when

W = Y ∗Q†Y = inf Ȳ {Ȳ
∗
Ȳ : Y = Q̄Ȳ }.

Let W ∗,Q∗ be the solutions to (4). Since Q∗ ∈ K we note by definition of K that there are
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strictly positive numbers α̊k and frequencies ξ̊k ∈ [0, 2π] such that

Q∗ =

P
∑

k=1

α̊kΓ(ξ̊k) =

P
∑

k=1

[γ(ξ̊k)
√

α̊k][γ(ξ̊k)
√

α̊k]
∗.

Here we don’t require the above decomposition to be unique, and the value of P can be more than

M . The above equation can be re-written as Q∗ = Q̄Q̄
∗
, with

Q̄ = [ γ(ξ1)
√

α̊1 · · · γ(ξP )
√

α̊P ]

Since W ∗,Q∗ are the solutions to (4), the linear matrix inequality (LMI)






W ∗ Y ∗

Y Q∗






� 0

must hold. Hence Proposition 2 ensures the existence of complex numbers {βk}Pk=1 such that

Y =
P
∑

k=1

γ(ξ̊k)β
∗
k

√

α̊k, W ∗ =
P
∑

k=1

βkβ
∗
k. (28)

Next we show ||βk||2 =
√
α̊k by contradiction. Suppose ||βk||2 6=

√
α̊k. Take

Ŵ =
P
∑

k=1

βk

||βk||2
||βk||2

√

α̊k
β∗

k

||βk||2
,

Q̂ =
P
∑

k=1

γ(ξ̊k) ||βk||2
√

α̊k γ∗(ξ̊k),

so that Q̂ ∈ K. Verify that







Ŵ Y ∗

Y Q̂






=

P
∑

k=1













βk

||βk||2

γ(ξ̊k)













||βk||2
√

α̊k













βk

||βk||2

γ(ξ̊k)













∗

is non-negative definite, and thereby Ŵ , Q̂ belong to the feasible set of the optimization problem

(4). In addition,

Tr(W ∗ − Ŵ ) + e∗(Q∗ − Q̂)e

=

P
∑

k=1

{α̊k + ||βk||22 − 2||βk||2
√

α̊k} > 0,
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but that leads to a contradiction since W ∗,Q∗ are the solutions to (4). Hence ||βk||2 =
√
α̊k, and

Tr(W ∗) = e∗Q∗e = {Tr(W ∗) + e∗Q∗e}/2 =
∑

k

α̊k.

Also we can write βk = φ̊kα̊k where |φ̊k| = 1. Hence the first equation in (28) gives us an atomic

decomposition of Y :

Y =

P
∑

k=1

γ(ξ̊k)α̊kφ̊
∗

k, (29)

and therefore using (3) we infer that

||Y ||A ≤
P
∑

k=1

α̊k = {Tr(W ∗) + e∗Q∗e}/2. (30)

Now consider a solution to (3). Such a solution constitute some P̌ positive numbers {α̌k}P̌k=1,

associated numbers {ξ̌k}P̌k=1 with each ξ̌k ∈ [0, 2π], and unit norm vectors {φ̌k}P̌k=1 such that

||Y ||A =

P̌
∑

k=1

α̌k, (31)

and in addition, the atomic decomposition

Y =

P
∑

k=1

γ(ξ̌k)α̌kφ̌
∗

k (32)

holds. Take

W̌ =
P̌
∑

k=1

φ̌kα̌kφ̌
∗

k, Q̂ =
P
∑

k=1

γ(ξ̌k) α̌kγ
∗(ξ̌k),

so that Q̌ ∈ K, and in addition






W̌ Y ∗

Y Q̌






=

P̌
∑

k=1







φ̌k

γ(ξ̌k)






α̌k







φ̌k

γ(ξ̌k)







∗

is non-negative definite. Thus W̌ , Q̌ belong to the feasible set of the optimization problem (4).

Since W ∗,Q∗ are the solutions to (4) we conclude that

{Tr(W ∗) + e∗Q∗e}/2 =
∑

k

α̊k

≤ {Tr(W̌ ) + e∗Q̌e}/2 =
∑

k

α̌k = ||Y ||A.
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This observation and (30) imply that

||Y ||A = {Tr(W ∗) + e∗Q∗e}/2.

Consequently, it follows that

• The atomic decomposition (29) obtained from the solution of (4) gives an optimal solution

to (3); and

• An atomic decomposition (32) achieving the optimality criterion (31) gives an optimal solu-

tion W̌ and Q̌ to (4).

B Proof of Lemma 3

Proof: We need the following result, which has been used also in several other papers on atomic

norm minimization based methods, e.g., [41].

Proposition 2. Suppose a fixed Q � 0 is given, and Q̄ is any matrix satisfying Q = Q̄Q̄
∗
. Then

the LMI






W 1 Z̊
∗

Z̊ Q






� 0. (33)

holds if and only if there exists Z̄ such that Z̊ = Q̄Z̄
∗
, and W 1 � Z̄Z̄

∗
. Given such Z̄ the value

of Tr(W 1) is minimized W 1 = Z̄Z̄
∗
.

Take any Q̄ satisfying Q = Q̄Q̄
∗
. Using Proposition 2 we see that (20) is equivalent to the

problem

minimize
Z̄∈CP×P1

Tr{Z̄Z̄
∗},

subject to Tr{(Z − Q̄Z̄
∗
)(Z − Q̄Z̄

∗
)∗} ≤ ζ

(34)

in the sense that the solution Z̄∗ to (34) gives the solutions W 1∗ = Z̄∗Z̄
∗
∗ and Z̊∗ = Q̄Z̄

∗
∗ to (20).

The Lagrangian associated with (34) is given by

L(Z̄, λ) = Tr{Z̄Z̄
∗} − λ[ζ − Tr{(Z − Q̄Z̄

∗
)(Z − Q̄Z̄

∗
)∗}],
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where the Lagrange multiplier λ ≥ 0. We denote the dual optimal point by λ∗. The KKT

complementary slackness condition associated with (34) asserts either λ∗ = 0, or

Tr{(Z − Q̄Z̄
∗
∗)(Z − Q̄Z̄

∗
∗)

∗} = ζ. (35)

Suppose (35) does not hold, i.e. λ∗ = 0. Then, since the derivative of L with respect to any

element of Z̄ must vanish when evaluated at (Z̄∗, λ∗), we get Z̄∗ = 0. Consequently, the in-

equality constraint in (34) must hold with Z̄∗ = 0, while (35) cannot hold. Together these imply

Tr(ZZ∗)∗ < ζ . But that contradicts the assumption of the Lemma, meaning (35) must hold. Since

Z̊∗ = Q̄Z̄
∗
∗, the proof is complete.
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